Księżyce: 1. Temperatura: -88 do 58 o C. Nasza planeta matka jest trzecią od Słońca. Jak dotąd jest jedyną planetą, którą znamy zdolną podtrzymać życie. Jest piątą co do rozmiaru planetą w układzie słonecznym i jedyną na której występuje płynna woda. Ziemia jest największą z czterech skalistych planet w naszym układzie
IGŁA: bywa magnetyczna ★★★ DOMENA: internetowa lub magnetyczna ★★★★ Wattaru: OSTREK: oś, na której obraca się igła magnetyczna busoli ★★★★★ mariola1958: CHARYZMA: magnetyczna osobowość ★★★ KIERUNEK: północny wskazuje igła magnetyczna ★★★ FERROFLUID: substancja magnetyczna w postaci płynu
Niektórzy (opierając się na literaturze anglojęzycznej) traktują elektromagnes i solenoid jako jedno i to samo. Owszem, elektromagnes może być solenoidem, ale solenoid to jedynie nazwa specjalnego rodzaju cewki, której długość jest znacznie większa od jej średnicy. Wiele elektromagnesów nie jest więc solenoidami.
Na szczęście pole magnetyczne ma jeszcze taką cechę, że obraca ciała obdarzone momentem magnetycznym (igły magnetyczne, żelazne opiłki) ustawiając je zawsze równolegle do linii pola. Jeśli na przykład wokół magnesu sztabkowego rozsypiemy żelazne opiłki, to ułożą się one tworząc charakterystyczny wzór (zobacz Rys. a).
Na takiej zasadzie działa kompas. Igła, która się w nim znajduje jest małym magnesem. Jej umocowanie umożliwia swobodny obrót wokół własnej osi. Właściwości pola magnetycznego wykorzystuje busola magnetyczna – najstarszy przyrząd do określania kursu. Jest on niezawodny, lekki i prosty w budowie, dlatego umieszcza się go na
Oś magnetyczna nie pokrywa się jednak z osią obrotu Ziemi, lecz jest od niej odchylona o kilkanaście stopni i zmienia swoje położenie; obecnie odchylenie to wynosi około 11°. Jako biegun północny igły magnetycznej (i ogólnie magnesów) przyjęło się wskazywać ten z jej końców, który wskazuje północ.
EWgnwDE. Przez pole magnetyczne Ziemi jest efekt magnetyczny że jaką wywiera Ziemi i który rozciąga się od jego wnętrza do setek kilometrów w przestrzeni. Jest bardzo podobny do tego wytwarzanego przez magnes sztabkowy. Pomysł ten został zasugerowany przez angielskiego naukowca Williama Gilberta w XVII wieku, który również zauważył, że nie jest możliwe oddzielenie biegunów magnesu. Rysunek 1 przedstawia linie pola magnetycznego Ziemi. Są zawsze zamknięte, przechodzą przez wnętrze i wychodzą na zewnątrz, tworząc rodzaj osłony. Rysunek 1. Pole magnetyczne Ziemi przypomina magnes sztabkowy. Źródło: Wikimedia pola magnetycznego Ziemi wciąż pozostaje tajemnicą. Zewnętrzne jądro ziemi, wykonane z żeliwa, nie może samo z siebie wytworzyć pola, ponieważ temperatura jest taka, że niszczy porządek magnetyczny. Próg temperatury dla tego jest znany jako temperatura Curie. Dlatego nie jest możliwe, aby duża masa namagnesowanego materiału była odpowiedzialna za pole. Wykluczając tę hipotezę, musimy poszukać pochodzenia pola w innym zjawisku: rotacji Ziemi. To powoduje, że stopiony rdzeń obraca się nierównomiernie, tworząc efekt dynama, w którym płyn samorzutnie wytwarza pole magnetyczne. Uważa się, że efekt dynama jest przyczyną magnetyzmu obiektów astronomicznych, na przykład Słońca. Jednak do tej pory nie wiadomo, dlaczego płyn zachowuje się w ten sposób i jak utrzymują się wytwarzane prądy elektryczne. cechy - Ziemskie pole magnetyczne jest wynikiem trzech elementów: samego pola wewnętrznego, zewnętrznego pola magnetycznego i minerałów magnetycznych w skorupie: Pole wewnętrzne: przypomina dipol magnetyczny (magnes) znajdujący się w centrum Ziemi i jego udział wynosi około 90%. Zmienia się bardzo powoli w czasie. Pole zewnętrzne: pochodzi z aktywności słonecznej w warstwach atmosfery. Nie wygląda jak dipol i ma wiele odmian: codzienne, roczne, burze magnetyczne i inne. Skały magnetyczne w skorupie ziemskiej, które również tworzą własne pole. - Pole magnetyczne jest spolaryzowane, przedstawiając bieguny północne i południowe, podobnie jak magnes sztabkowy. - Ponieważ przeciwległe bieguny przyciągają się, igła kompasu, będąca jego biegunem północnym, zawsze wskazuje w pobliżu geograficznej północy, gdzie znajduje się południowy biegun magnesu Ziemi. - Kierunek pola magnetycznego jest przedstawiony w postaci zamkniętych linii, które wychodzą z magnetycznego południa (biegun północny magnesu) i wchodzą w magnetyczną północ (biegun południowy magnesu). - Na północy magnetycznej - a także na południu magnetycznym - pole jest prostopadłe do powierzchni ziemi, podczas gdy na równiku pole to wypasane. (patrz rysunek 1) - Natężenie pola jest znacznie większe na biegunach niż na równiku. - Oś ziemskiego dipola (rysunek 1) i oś obrotu nie są wyrównane. Między nimi występuje przemieszczenie 11,2º. Elementy geomagnetyczne Ponieważ pole magnetyczne jest wektorem, kartezjański układ współrzędnych XYZ z początkiem O pomaga ustalić jego położenie. Rysunek 2. Elementy geomagnetyczne. Źródło: F. natężenie pola magnetycznego lub indukcji wynosi B, a jego rzuty lub składowe to: H w poziomie i Z w pionie. Są ze sobą powiązane: -D, kąt deklinacji magnetycznej, utworzony między H i geograficzną północą (oś X), dodatni na wschodzie i ujemny na zachodzie. -I, kąt nachylenia magnetycznego między B i H, dodatni, jeśli B jest poniżej poziomu. Igła kompasu zostanie zorientowana w kierunku H, poziomej składowej pola. Płaszczyzna określona przez B i H nazywana jest południkiem magnetycznym, natomiast ZX jest południkiem geograficznym. Wektor pola magnetycznego jest w pełni określony, jeśli znane są trzy z następujących wielkości, które nazywane są elementami geomagnetycznymi: B , H, D, I, X, Y, Z. Funkcjonować Oto niektóre z najważniejszych funkcji pola magnetycznego Ziemi: -Ludzie używali go do orientowania się za pomocą kompasu od setek lat. -Pełnia funkcję ochronną planety, otaczając ją i odbijając naładowane cząstki, które nieustannie emituje Słońce. -Chociaż ziemskie pole magnetyczne (30 - 60 mikro Tesli) jest słabe w porównaniu z polami w laboratorium, jest na tyle silne, że niektóre zwierzęta używają go do orientacji. Tak samo jak ptaki wędrowne, gołębie pocztowe, wieloryby i niektóre ławice ryb. -Magnetometria czyli pomiar pola magnetycznego służy do poszukiwania surowców mineralnych. Zorza polarna i południe Znane są odpowiednio jako północne lub południowe światła. Pojawiają się na szerokościach geograficznych w pobliżu biegunów, gdzie pole magnetyczne jest prawie prostopadłe do powierzchni Ziemi i znacznie silniejsze niż na równiku. Rysunek 3. Zorza polarna na Alasce. Źródło: Wikimedia się z dużej ilości naładowanych cząstek, które Słońce wysyła w sposób ciągły. Te, które są uwięzione przez pole, zwykle dryfują w kierunku biegunów z powodu większej intensywności. Tam wykorzystują to do jonizacji atmosfery, w wyniku czego emitowane jest światło widzialne. Zorza polarna jest widoczna na Alasce, w Kanadzie i północnej Europie ze względu na bliskość bieguna magnetycznego. Ale z powodu ich migracji możliwe jest, że z czasem staną się bardziej widoczne na północy Rosji. Jednak na razie nie wydaje się, aby tak było, ponieważ zorze nie podążają dokładnie za błędną północą magnetyczną. Deklinacja magnetyczna i nawigacja W nawigacji, zwłaszcza podczas bardzo długich podróży, niezwykle ważna jest znajomość deklinacji magnetycznej, aby dokonać niezbędnej korekty i znaleźć prawdziwą północ. Osiąga się to za pomocą map, które wskazują linie równej deklinacji (izogonalnej), ponieważ deklinacja różni się znacznie w zależności od położenia geograficznego. Wynika to z faktu, że pole magnetyczne nieustannie doświadcza lokalnych zmian. Wielkie liczby namalowane na pasach startowych to kierunki w stopniach względem północy magnetycznej, podzielone przez 10 i zaokrąglone. Faceci z północy Choć może się to wydawać zagmatwane, istnieje kilka typów północy, określonych przez określone kryteria. W ten sposób możemy znaleźć: Północ magnetyczna to punkt na Ziemi, w którym pole magnetyczne jest prostopadłe do powierzchni. Tam wskazuje kompas, a przy okazji, nie jest on antypodalny (diametralnie przeciwny) względem magnetycznego południa. Północ geomagnetyczna to miejsce, w którym oś dipola magnetycznego wznosi się na powierzchnię (patrz rysunek 1). Ponieważ pole magnetyczne Ziemi jest nieco bardziej złożone niż pole dipolowe, punkt ten nie pokrywa się dokładnie z północą magnetyczną. Geograficzna północ przechodzi przez nią oś obrotu ziemi. Na północ od Lamberta lub siatki znajduje się punkt, w którym zbiegają się południki map. Nie pokrywa się dokładnie z rzeczywistą lub geograficzną północą, ponieważ sferyczna powierzchnia Ziemi jest zniekształcona podczas rzutowania na płaszczyznę. Rysunek 4. Różne północy i ich lokalizacja. Źródło: Wikimedia Commons. CavitOdwrócenie pola magnetycznego Jest zagadkowy fakt: bieguny magnetyczne mogą zmieniać położenie w ciągu kilku tysięcy lat i to się obecnie dzieje. W rzeczywistości wiadomo, że wydarzyło się to 171 razy wcześniej, w ciągu ostatnich 17 milionów lat. Dowody znajdują się w skałach wychodzących ze szczeliny na środku Oceanu Atlantyckiego. Jak się okazuje, skała stygnie i krzepnie, wyznaczając na chwilę kierunek namagnesowania Ziemi, co zostaje zachowane. Ale jak dotąd nie ma zadowalającego wyjaśnienia, dlaczego tak się dzieje, ani źródła energii potrzebnej do odwrócenia pola. Jak wspomniano wcześniej, północ magnetyczna zmierza obecnie szybko w kierunku Syberii, a południe również, choć wolniej, porusza się. Niektórzy eksperci uważają, że jest to spowodowane przepływem ciekłego żelaza z dużą prędkością tuż pod Kanadą, który osłabia pole. Może to być również początek magnetycznego odwrócenia. Ostatni, który miał miejsce, miał miejsce 700 000 lat temu. Może się zdarzyć, że dynamo, które wywołuje ziemski magnetyzm, wyłącza się na jakiś czas, spontanicznie lub w wyniku jakiejś zewnętrznej interwencji, takiej jak na przykład zbliżająca się kometa, chociaż nie ma na to dowodów. Kiedy dynamo uruchamia się ponownie, bieguny magnetyczne zamieniają się miejscami. Ale może się również zdarzyć, że inwersja nie jest całkowita, a tymczasowe odchylenie osi dipola, które ostatecznie powróci do pierwotnego położenia. Eksperyment Odbywa się to za pomocą cewek Helmholtza: dwóch identycznych i koncentrycznych cewek kołowych, przez które przepływa to samo natężenie prądu. Pole magnetyczne cewek oddziałuje z polem Ziemi, powodując powstanie pola magnetycznego. Rysunek 5. Eksperyment w celu określenia wartości pola magnetycznego Ziemi. Źródło: F. cewek wytwarzane jest w przybliżeniu jednolite pole magnetyczne, którego wielkość wynosi: -Jest natężenie prądu -μ o to przenikalność magnetyczna próżni -R jest promieniem cewek Proces W kompas umieszczony w osiowym osi cewki, określają kierunek ziemskiego pola magnetycznego B T . -Oriente oś cewki jest prostopadła do B , T . Zatem pole B H generowany prąd przepływa będą prostopadłe do B , T . W tym przypadku: Rysunek 6. Wynikowe pole jest tym, co zaznaczy igła kompasu. Źródło: F. H jest proporcjonalne do prądu przepływającego przez cewki, tak że B H = kI, gdzie k jest stałą zależną od geometrii wspomnianych cewek: promienia i liczby zwojów. Prąd pomiarowy, może mieć wartość B H . Po to aby: A zatem: -Różne prądy są przepuszczane przez cewki, a pary (I, tg θ) są zapisywane w tabeli. -Wykres I vs. tg θ. Ponieważ zależność jest liniowa, oczekujemy uzyskania prostej, której nachylenie m wynosi: -Wreszcie od prostej - linia dopasowania najmniejszych kwadratów lub korektę widzenia, to przechodzi do określenia wartości B, T . Bibliografia Pole magnetyczne Ziemi. Odzyskany z: Grupa Magneto-hydrodynamiki Uniwersytetu Navarra. Efekt dynama: historia. Odzyskany z: Kirkpatrick, L. 2007. Fizyka: spojrzenie na świat. 6. wydanie skrócone. Cengage Learning. GARNEK. Ziemskie pole magnetyczne i jego zmiany w czasie. Odzyskany z: NatGeo. Północny biegun magnetyczny Ziemi się porusza. Odzyskany z: Amerykański naukowiec. Ziemia ma więcej niż jeden biegun północny. Odzyskany z: Wikipedia. Biegun geomagnetyczny. Odzyskane z:
Pole magnetyczne jest obszarem, w którym działają siły magnetyczne. Stanowi ono jedną z postaci pola elektromagnetycznego. Źródłem pola magnetycznego są poruszające się w nim ładunki elektryczne. Pole magnetyczne posiada charakterystyczną właściwość przestrzeni, która polega na tym, iż jeśli w tej przestrzeni umieści się magnesy lub przewodniki z przepływającym przez nie prądem elektrycznym lub poruszającymi się ładunkami elektrycznymi, to będą na nie działały siły magnetyczne. Do wykrywania pola magnetycznego służy najczęściej mały, lekki magnes uformowany na kształt igły (tzw. igła magnetyczna). Końce igły magnetycznej są pomalowane zazwyczaj na kolor czerwony i niebieski. Igłą magnetyczną może być także kawałek namagnesowanego drutu. Żeby igła magnetyczna działała, musi mieć możliwość lekkiego obracania się. Opory ruchu w czasie obrotu powinny być niewielkie. W celu osiągnięcia tego można podeprzeć igłę magnetyczną na czubku jakiegoś szpikulca w samym środku ciężkości. Jeżeli szpilka ma ostry koniec, to opory ruchu podczas obracania będą niewielkie. Nawet mała siła magnetyczna spowoduje przekręcenie się igły. Pole magnetyczne posiada taką właściwość przestrzeni, iż umieszczone wewnątrz danego obszaru igły magnetyczne będą mogły obracać się lub utrzymywać stały kierunek, pomimo prób wytrącania ich z pierwotnego ustawienia. Drugim sposobem na wykrywanie pola magnetycznego jest badanie siły działającej na ładunki elektryczne. Albowiem pole magnetyczne działa również na poruszające się cząstki naładowane bądź na przewodniki z prądem, w których poruszają się ładunki. Siłę działającą na ładunek elektryczny poruszający się w polu magnetycznym nazywamy siłą Lorentza. Własności pola magnetycznego: Pole magnetyczne charakteryzują dwa rodzaje wektorów: natężenia pola magnetycznego H oraz indukcji magnetycznej B. Nazywa się je także polem wektorowym i przedstawia jako linie pola magnetycznego. Jego kierunek określa ustawienie igły magnetycznej albo obwodu, w którym płynie prąd elektryczny. Pole magnetyczne definiuje się poprzez siłę działająca na poruszający się ładunek w tym polu. W kołowym polu magnetycznym linie układają się we współśrodkowe okręgi. Wytwarza je nieskończenie długi prostoliniowy przewodnik. Indukcja magnetyczna tego rodzaju pola maleje odwrotnie proporcjonalnie do odległości od przewodnika. Źródłami pola magnetycznego są: trwale namagnesowane ciała, ładunki elektryczne w ruchu jednostajnym, Ziemia, magnesy. Stal w polu magnetycznym zakłóca to pole, gdyż wytwarza ona swoje własne pole.
Ziemia ma zarówno bieguny geograficzne, jak i magnetyczne. Geograficzne bieguny północny i południowy wyznaczają przeciwległe końce osi centralnej, na której obraca się Ziemia. Jednak położenia biegunów północnego i południowego nie są punktami stałymi, a ich odległość od odpowiadających im biegunów geograficznych może się różnić nawet o kilka tysięcy kilometrów. Ziemskie pole magnetyczne jest generowane przez wirowanie planety i zachowanie płynu bogatego w żelazo znajdującego się w ziemskim rdzeniu. Tym samym pole magnetyczne – i bieguny magnetyczne – zmieniają się w odpowiedzi na prędkość i wzór ruchu tego płynu. Czytaj też: Kanada wysuwa roszczenia w sprawie bieguna północnego Igły kompasu są zaprojektowane w celu wyrównania z polem magnetycznym Ziemi. Północny koniec igły wskazuje na biegun północny, a przeciwny – na południowy. Kiedy wyjmiemy kompas i pozwolimy, aby igła osiadła, będzie działać równolegle do linii ziemskiego pola magnetycznego, na którym stoimy. Sęk w tym, że pole magnetyczne nie jest ułożone w linie prostej od bieguna północnego do południowego. W miarę zbliżania się do magnetycznego bieguna południowego, linie pola będą się wyginać i znajdą bliżej magnetycznego bieguna południowego, biegnąc prostopadle do powierzchni Ziemi. Gdybyśmy chcieli więc odwiedzić biegun południowy, mając kompas ze swobodnie “dryfującą” igłą, która mogłaby poruszać się w trzech wymiarach, po dotarciu do magnetycznego bieguna południowego “południowy” koniec tej igły wskazywałby prosto w dół. Ten sam kompas zachowywałby się podobnie na magnetycznym biegunie północnym. Tylko na równiku typowy kompas zapewni najbardziej dokładny odczyt kierunku północnego i południowego. [Źródło: Czytaj też: Ziemskie bieguny magnetyczne mogą odwracać się częściej niż sądzono
Wszelkie przewodniki z obecnymi, poruszającymi się naładowanymi cząstkami, magnesami tworzą wokół pola magnetycznego. Zdeterminowany trend magnetyczny linie, możesz dowiedzieć się, jak wpłynie to na pobliskie naładowane źródło prądu (przewodnik, solenoid);- Prawa ręka;- strzałki się dowiedzieć trend magnetyczny linie dla bezpośredniego przewodnika z prądem, ustaw goaby prąd elektryczny płynął w twoim kierunku (na przykład na arkuszu papieru). Staraj się zapamiętać, jak obracają się wiertło lub śruba za pomocą śrubokrętu: zgodnie z ruchem wskazówek zegara i do przodu. Narysuj ten ruch ręką, aby zrozumieć trend linie. W ten sposób linie pola magnetycznego są kierowane zgodnie z ruchem wskazówek zegara. Zaznacz je schematycznie na rysunku. Ta metoda jest nazywana regułą przewodnik nie jest w niewłaściwym kierunku, mentalnie postój w ten sposób lub obróć konstrukcję tak, aby prąd został usunięty z ciebie. Następnie zapamiętaj ruch wiertła lub śruby i włóż trend magnetyczny linie zgodnie z ruchem wskazówek zegara3Jeśli zasada wiercenia wydaje się być skomplikowana, spróbuj zastosować zasadę prawej ręki. Aby użyć go do określenia trend magnetyczny linie, używaj prawej ręki rękąwystający kciuk. Skieruj kciuk wzdłuż ruchu przewodu, a pozostałe cztery palce w kierunku prądu indukcyjnego. Teraz zwróćcie uwagę, linie pola magnetycznego wchodzą do waszej użyć zasady prawej rękidla cewki z prądem uchwycić ją mentalnie dłonią prawą tak, aby palce były skierowane wzdłuż prądu w cewkach. Spójrz, gdzie wygląda opóźniony kciuk - tak jest trend magnetyczny linie wewnątrz solenoidu. Ta metoda pomoże określić orientację metalowego blanku, jeśli potrzebujesz naładować magnes cewką z trend magnetyczny linie za pomocą igły magnetycznej ułóż kilka takich strzałek wokół drutu lub cewki. Zobaczysz, że osie strzał są styczne do obwodu. Korzystając z tej metody, możesz znaleźć trend linie w każdym punkcie przestrzeni i udowodnić ich 2: Jak określić kierunek linii indukcyjnejPod liniami indukcji rozumie się linie siłypole magnetyczne. Aby uzyskać informacje o tej formie materii, nie wystarczy znać bezwzględnej wartości indukcji, trzeba znać jej kierunek. Kierunek linii indukcji można znaleźć za pomocą specjalnych urządzeń lub reguł. Potrzebujesz- prosty i okrągły przewodnik; - źródło prądu stałego; - magnes bezpośrednio do źródła prądu stałegodyrygent. Jeśli prąd przepływa przez niego, jest otoczony przez pole magnetyczne, którego linie siły są koncentrycznymi okręgami. Określ kierunek linii siły, stosując zasadę prawego wiertła. Prawą świdrem jest śruba, która porusza się do przodu, gdy obraca się na prawą stronę (zgodnie z ruchem wskazówek zegara).2Określić kierunek prądu w przewodniku,biorąc pod uwagę, że przepływa on od dodatniego bieguna źródła do ujemnego. Umieść trzon śruby równolegle do przewodu. Zacznij obracać go tak, aby pręt zaczął poruszać się w kierunku prądu. W takim przypadku kierunek obrotu klamki wskaże kierunek linii indukcji pola kierunek uzwojenia linii indukcyjnychz prądem. Aby to zrobić, użyj tej samej reguły prawego drzewca. Umieścić wiertło w taki sposób, aby uchwyt obracał się w kierunku przepływu prądu. W takim przypadku ruch żerdzi wiertniczej wskaże kierunek linii indukcyjnych. Na przykład, jeśli prąd płynie w cewce w kierunku zgodnym z ruchem wskazówek zegara, linie indukcji magnetycznej będą prostopadłe do płaszczyzny skrętu i pójdą do jej przewodnik porusza się w zewnętrznym mundurzepole magnetyczne, określ jego kierunek, stosując zasadę lewej ręki. Aby to zrobić, połóż lewą rękę tak, aby cztery palce wskazywały bieżący kierunek, a także cofnięty kciuk, kierunek ruchu dyrygenta. Następnie linie indukcji jednorodnego pola magnetycznego wejdą w lewą kierunek linii indukcji magnetycznejmagnes stały. Aby to zrobić, określ, gdzie znajdują się jego północne i południowe bieguny. Linie indukcji magnetycznej są skierowane z północy na biegun południowy na zewnątrz magnesu i od bieguna południowego do bieguna północnego wewnątrz magnesu trwałego. Wskazówka 3: Jak określić widoczność na rysunkuW procesie tworzenia rysunku napotyka inżynierz całym szeregiem problemów, z możliwością rozwiązania, który jest stopniem jego kwalifikacji. Określanie widoczności na rysunkach wieloczłonowych części jest jednym z wymienionych problemów. Najpopularniejszą metodą określania widoczności na rysunku jest metoda rywalizacji punktów. PotrzebujeszObrazy szczegółowe bez określonej widocznościprzynajmniej w dwóch głównych widokach, które uchwycą widok z przodu, w tym celu najlepiej nadają się widoki z przodu i z góry, najważniejsze punkty na rysunku zaznaczonym, w którym widoczność zostanie punkty na rysunku, którego rzuty najakakolwiek płaszczyzna pokrywa się, nie pokrywając się z drugą płaszczyzną rzutu. Takie punkty nazywane są konkurującymi i będą używane przez nas jako punkty odniesienia w budowaniu widoczności, informując nas o informacji o położeniu obiektów, do których te punkty są punkty, które zauważyłeś wcześniej,zaprojektowane w celu określenia widoczności, narysuj linię prostą, tak aby były prostopadłe do jednej z głównych płaszczyzn rzutowania, a jednocześnie automatycznie ustawiają się równolegle do drugiej płaszczyzny punkty przecięcia liniiTy w poprzednim kroku, z detalami. Punkty te będą konkurować, ponieważ ich rzuty na tej samej płaszczyźnie będą się pokrywać, nie pokrywając się w drugiej płaszczyźnie. Jeśli rzuty punktów pokrywają się z płaszczyzną czołową (П1), wówczas takie punkty są nazywane konkursem frontalnym. Jeśli rzuty punktów pokrywają się z płaszczyzną poziomą (P2), wówczas takie punkty nazywa się konkurowaniem w widoczność. W przypadku wizualnie konkurencyjnych punktów widoczność jest określona w widoku z góry. Punkt ten, którego pozioma projekcja znajduje się niżej, czyli bliżej obserwatora, będzie widoczny w widoku z przodu. W związku z tym inny punkt konkurujący z tym będzie niewidoczny. W punktach rywalizujących poziomo, widzialność jest określona na widoku z przodu, a punkt ten będzie widoczny, co jest wyższe niż pozostałe, a wszystkie pozostałe, konkurujące z tym, będą niewidoczne. Wskazówka 4: Jak zobaczyć pole magnetycznePole magnetyczne nie jest postrzegane przez zmysły człowieka. Aby go zobaczyć, potrzebujesz specjalnego urządzenia. Umożliwia obserwację kształtu linii pola magnetycznego w trójwymiarowej podstawę urządzenia - plastikbutelka. Niepożądane jest używanie szkła, ponieważ może ono zostać przerwane podczas eksperymentów za pomocą magnesu, narzędzi lub innych metalowych przedmiotów. Butelka powinna mieć naklejkę tylko z jednej strony. Jeśli etykieta jest okrągła, usuń jedną z jej połówek, a jeśli tak się nie stanie, pomaluj jedną stronę butelki białą farbą. Pojawi się jasne tło, na którym linie siły są najbardziej się w każdym pokoju z wyjątkiem kuchni. Rozłóż gazetę na stole, załóż rękawice ochronne. Przeciąć niepotrzebne nożyczki z trocin ze starej metalowej gąbki. Zawiń magnes w torebce i użyj tego urządzenia, aby całkowicie złożyć trociny. Włóż lejek do szyjki butelki, a następnie, umieszczając urządzenie nad lejkiem, zdejmij magnes z torby. Trociny oddzielą się od worka i wpadną przez lejek do butelki. Nie pozwól, aby trociny dostały się na podłogę i otaczające przedmioty, zwłaszcza ubrania, buty i jedzenie! Teraz napełnij butelkę prawie do góry przezroczystym i bezpiecznym olejem, a następnie szczelnie zamknij. Dokładnie umyć gotową jednostkę od zewnątrz z pozostałości trociny z olejem, obracając butelkę. Tylko potrząsanie jest nieskuteczne. Teraz przynieś magnes, a trociny ustawią się zgodnie z kształtem linii siły. Aby przygotować urządzenie do następnego eksperymentu, usuń magnes i ponownie wymieszaj trociny olejem, jak wskazano się obserwować linie siły polemagnesy o różnych kształtach. Narysuj lub sfotografuj je. Zastanów się, dlaczego mają dokładnie tę formę, poszukaj odpowiedzi na to pytanie w podręczniku fizyki. Spróbuj wyjaśnić, dlaczego urządzenie nie reaguje na zmienne pola magnetyczne, na przykład z transformatorów. Wskazówka 5: Jak określić aktualny kierunekTo prawda kierunek prąd to ten, w którym poruszają się naładowane cząstki. To z kolei zależy od znaku ich ładunku. Ponadto technicy używają warunkowego kierunek transfer ładunku, niezależnie od właściwości określić prawdziwy kierunek ruchunaładowane cząsteczki przestrzegają następującej zasady. Wewnątrz źródła wynurzają się z elektrody, która z tego jest naładowana przeciwnym znakiem i przesuwa się na elektrodę, która z tego powodu nabiera ładunku podobnego w znaku do ładunku cząstek. W zewnętrznym łańcuchu są one wyrywane przez pole elektryczne z elektrody, którego ładunek pokrywa się z ładunkiem cząstek i przyciąga do przeciwnie metalu, nośniki prąd przenoszenie wolnych elektronówmiędzy węzłami sieci krystalicznej. Ponieważ cząstki te są naładowane ujemnie, we wnętrzu źródła uważają, że przemieszczają się one od elektrody dodatniej do elektrody ujemnej, aw obwodzie zewnętrznym od ujemnej do przewodach niemetalicznych ładunek jest przenoszonytakże elektrony, ale mechanizm ich ruchu jest inny. Elektron, opuszczając atom i przekształcając go w jon dodatni, zmusza go do wychwycenia elektronu z poprzedniego atomu. Ten sam elektron, który opuścił atom, jonizuje w następnej kolejności. Proces jest powtarzany w sposób ciągły, podczas gdy prąd płynie w obwodzie. Kierunek ruchu naładowanych cząstek w tym przypadku jest taki sam, jak w poprzednim są dwojakiego rodzaju: z przewodnictwem elektronów i otworów. W pierwszych nośnikach ładunków są elektrony, a zatem kierunek ruchu cząstek w nich można uznać za taki sam jak w metalach i przewodach niemetalicznych. W drugim ładunek jest przenoszony przez wirtualne cząstki - dziury. Po prostu można powiedzieć, że są to jakieś puste miejsca, elektrony, w których nie ma. Ze względu na alternatywne przesunięcie elektronowe, otwory przesuwają się w przeciwnym kierunku. Jeśli połączymy dwa półprzewodniki, z których jeden ma przewodność elektroniczną, a drugą przewodność otworu, to takie urządzenie, zwane diodą, będzie miało właściwości próżni ładunek przenoszony jest przez poruszające się elektronyod ogrzanej elektrody (katody) do zimna (anoda). Należy zauważyć, że po wyprostowaniu diody katoda jest ujemna w stosunku do anody, ale w odniesieniu do wspólnego przewodu, do którego podłączona jest dodatkowa wtyczka anodowa wtórnego transformatora, katoda jest naładowana dodatnio. Nie ma tu sprzeczności, biorąc pod uwagę spadek napięcia na dowolnej diodzie (zarówno próżniowej, jak i półprzewodnikowej).6W gazach ładunek jest przenoszony przez jony dodatnie. Kierunek przemieszczania się ładunków w nich jest uważany za przeciwny do kierunku ich przemieszczania się w metalach, niemetalicznych przewodach stałych, próżni, a także półprzewodnikach o przewodności elektrycznej, i podobny do kierunku ich przemieszczania w półprzewodnikach o przewodności otworu. Jony są znacznie cięższe od elektronów, co sprawia, że urządzenia do wyładowań gazowych są bardzo obojętne. Urządzenia jonowe z symetrycznymi elektrodami nie mają jednostronnego przewodnictwa, ale z asymetrycznymi elektrodami mają one pewien zakres potencjalnych cieczach ładunek zawsze jest przenoszony przez ciężkie jony. W zależności od składu elektrolitu mogą być ujemne lub dodatnie. W pierwszym przypadku należy uważać, że zachowują się jak elektrony, w drugim przypadku, podobnie jak jony dodatnie w gazach lub otwory w określania kierunku prąd w obwodzie elektrycznym, bez względu na to gdzienaładowane cząsteczki poruszają się w rzeczywistości, uważają, że poruszają się w źródle od bieguna ujemnego do bieguna dodatniego, aw obwodzie zewnętrznym od dodatniego do ujemnego. Ten kierunek jest uważany za warunkowy, ale jest akceptowany przed odkryciem struktury atomu. Wskazówka 6: Gdzie znaleźć przewodnik do trekkingu w górach lub w lesieWiele osób wyjeżdża na wakacjenie bezcelowe leżenie na plaży i wędrówki lub jazda konna w górach lub w lesie, co daje możliwość bycia sam na sam z naturą i cieszyć się pięknem tego miejsca, nie jest zepsuty przez cywilizację i przetestować samemu. Ale jeśli pójdziesz nie tylko na spacer wzdłuż dobrze zadbanych ścieżek, ale w prawdziwym wielu dniach w nieznanych miejscach, bez przewodnika, którego nie możesz potrzebujesz przewodnika po wycieczce?Nawet doświadczeni turyści, szczególnie ci doświadczenitakie, przechodząc do gór lub lasu na złożonej trasie w miejscach, gdzie nie byli wcześniej, będą musieli zabrać ze sobą przewodnik. Dyrygentem jest osoba, która mieszka w danym obszarze i dobrze zna, który jest zaangażowany w eskorty zawodowo lub od czasu do czasu. Taka osoba nie tylko dokładnie przeanalizowała każdą drogę, ale zna wszystkie oznaki lokalnej pogody, zachowania i zasady bezpieczeństwa. Jego obecność gwarantuje, że podróż odbędzie się w najbardziej komfortowych warunkach, a wszyscy jej uczestnicy wrócą z niego bez zagrożenia. Przewodnik jest szczególnie niezbędny, gdy Ty i Twoi uczestnicy są początkujący. Czasami ignorancja podstawowych zasad bezpieczeństwa i brak podstawowych umiejętności turystycznych pociągają za sobą prawdziwe ludzkie tragedie. Dyrygent jest nie tylko gwarantem bezpieczeństwa, ale także osobą, która nauczy cię zasad przetrwania i pokaże ci coś, czego po prostu nie widzisz i dokładnie zbadaj wszystkie cechy tego terytorium, obejrzyj trasę i przygotuj się znaleźć przewodnik dla wycieczek pieszychJeśli wystarczy teren, do którego zmierzaszbez zamieszkałych, można zgodzić się na eskortę z mieszkańcami. Co do zasady, za niewielką opłatą, chętnie zgodzą się pomóc nowym osobom w tej sprawie. W przypadku, gdy duża osada znajduje się w pobliżu, można dowiedzieć się i skontaktuj się z lokalnymi klubami turystycznymi lub służbą ratunkową, jednostką Ministerstwa Sytuacji Nadzwyczajnych. Przed wyjazdem na trasę należy powiadomić miejscowe służby ratownicze i ustalić datę zameldowania o wyglądzie, tak aby w razie opóźnienia pomoc została natychmiast nie przyznają przewodnika od swoich szeregówczłonkowie i pracownicy, dla niektórych doradzą, do kogo z lokalnych mieszkańców można się zająć. Dobre rady i zalecenia można uzyskać, kontaktując się i przez punkt sprzedaży, w którym sprzedają sprzęt górski lub kemping, nie są zwykle handlu ludzie są zaznajomieni z turystyką i Internet pomoże Ci w wyszukiwaniu. Widać oficjalnych stron miast, które będą punktem wyjścia dla swojej wędrówki, często nie jest dostępna taka informacja. Istnieją wyspecjalizowane strony internetowe, które oferują usługi profesjonalnych przewodników i mogą Ci towarzyszyć, nie tylko w Rosji, ale również za granicą. Wskazówka 7: Co to jest lakier magnetycznyMagnetyczny lakier do paznokci pojawił się na rynkukilka lat temu. To prawda, na długo przed pojawieniem się szerokiej sprzedaży tego narzędzia błysnęła w limitowanych kolekcjach niektórych marek. Cecha produktu - wielkie możliwości projektowania. Za pomocą specjalnych magnesów paznokcie mogą być ozdobione stylizowanymi gwiazdami, płatkami śniegu, zygzakami lub działania lakieru magnetycznego w jego składzie. Formuła zawiera małe cząstki metalu, które pod działaniem magnesu są wyrównane w określonej kolejności. Każdy magnes może "narysować" tylko jeden rodzaj wzoru. Dlatego ci, którzy chcą różnorodności, są zmuszeni kupić kilka urządzeń o różnych motywach. Dobra wiadomość dla fanów lakierów magnetycznych - wszystkie akcesoria do tworzenia rysunków są wymienne. Możesz kupić lakiery jednej marki i zrobić na nich wzory z magnesami wspólną cechą wszystkich lakierów tego typu -podobny rodzaj powłoki. Lakiery mają gęstą teksturę z refleksami perłowymi, równomiernie nakładają produkt, wymagana jest umiejętność. Zakres lakierów magnetycznych jest ograniczony ciemnymi, złożonymi odcieniami od czarno-szarego do szaro-niebieskiego. Większość kwiatów ma wyraźny zimny strąk - jest ustalany przez cząsteczki metalu obecne w magnetyczne są bardzo odporne. Mogą jednak podkreślić wszystkie nieprawidłowości gwoździa. Aby produkt leżał idealnie, przed nałożeniem należy wyrównać płytkę z polerującym prętem i nałożyć na nią ochronną warstwę lakiery marek różnych kategorii cen są bardzopodobnie, to w kategorii magnesów istnieje odmiana. Początkujący powinni zwracać uwagę na magnesy, wzmocnione na stojaku - są znacznie wygodniejsze w użyciu. Wystarczy położyć palec na specjalnej platformie i magnes zacznie działać. Talerze, które musisz zachować nad pomalowanym paznokciem, są mniej wygodne - nie zawsze jest możliwe prawidłowe obliczenie odległości niezbędnej do pojawienia się wzoru. Jeśli zbliżysz płytę zbyt blisko, łatwo smarujesz świeżo nałożony rysunek do manicure magnetycznego- Gwiazda lub płatek śniegu. Na drugim miejscu są różne zespoły. Fale i zygzaki są mniej powszechne, a magnesy o niezwykłych wzorach, takich jak kwiaty czy serca, prawie nigdy nie są z lakierem magnetycznym ma kilkafunkcje. Środek nanosi się dość gęsto, świeżo barwiony paznokieć natychmiast umieszcza się pod magnesem. Im dłużej magnes jest trzymany nad lakierem i im bliżej się znajduje, tym jaśniejszy będzie wzór. Nałożenie lśniących blatów, płynne suszenie i inne środki nie są możliwe - zmyją powierzchnię magnetycznego lakieru, a wzór staje się bardzo widoczny. Suszenie zajmie co najmniej pół godziny, ale powłoka będzie silna i potrwa co najmniej 5 dni. Wskazówka 8: Co to jest anomalia magnetyczna i dlaczego takie zjawisko może wystąpić?W ubiegłym wieku postęp w nauce o naukach ścisłych i przyrodniczychrozwój nowej technologii osiągnął znaczną wysokość, ale na tej planecie wciąż istnieją niezbadane lub źle zbadane miejsca i zjawiska, które czasami mają niezwykłe "skutki uboczne". Anomalia magnetyczna jest jedną z magnetyczne Ziemi Głęboko pod naszymi stopami, pod skorupą ziemskiej skorupyjest to, że przez wiele miliardów lat Ziemia ocieplała się od środka - ogromny ocean lepkiej, rozgrzanej do czerwoności magmy. Ta magma składa się z różnych substancji, w tym metali, które bardzo dobrze przewodzą prąd elektryczny. Na całej planecie pod powierzchnią Ziemi mikroskopijne elektrony poruszają się, tworząc pole elektryczne, a wraz z nim pole magnetyczne. Przesuwanie biegunów geomagnetycznychPole magnetyczne Ziemi ma dwa bieguny: Północny słup geomagnetyczny (znajdujący się na półkuli południowej planety) i południowy biegun geomagnetyczny (zlokalizowany na półkuli północnej planety). Jednym z najbardziej znanych niezwykłych zjawisk związanych z ziemskim polem magnetycznym jest ruch geograficzny biegunów geomagnetycznych, co powoduje, że kilka czynników przyczynia się do powstawania pola magnetycznego, które przyczynia się do jego niestabilnej pozycji. Jest to interakcja z osią obrotu Ziemi i różnym naciskiem skorupy ziemskiej w różnych częściach planety oraz zbliżaniem się / usuwaniem ciał kosmicznych (Słońce, Księżyc) oraz, w większym stopniu, ruchu magmy. Strumień magmy to gigantyczny płaszcz płaszcza, który porusza się pod wpływem promieniowania słonecznego i rotacji Ziemi z zachodu na wschód. Ale ponieważ wielkość tej rzeki jest ogromna, to, jak zwykła rzeka, nie może poruszać się równomiernie. Oczywiście w idealnych warunkach dno rzeki płaszczowej powinno przebiegać wzdłuż równika. W tym przypadku geograficzne i magnetyczne bieguny Ziemi będą się pokrywać. Ale warunki naturalne są takie, że podczas ruchu magma szuka stref o najmniejszym oporze dla przepływu (stref o niskim ciśnieniu skorupy) i przesuwa się w ich kierunku, przesuwając w ten sposób pole magnetyczne i bieguny geomagnetyczne. Anomalie magnetyczneNiestabilność rzeki płaszcz wpływa nie tylko nabieguny magnetyczne, ale także na występowanie specjalnych stref zwanych "anomaliami magnetycznymi". Anomalie magnetyczne nie mają stałego umiejscowienia, mogą stać się silniejsze / słabsze, różnić się rozmiarem i przyczyną zjawiskiem są lokalne anomalie magnetyczne (poniżej 100 metrów kwadratowych). Występują wszędzie, znajdują się w chaotycznym porządku i powstają głównie pod wpływem złóż mineralnych położonych zbyt blisko powierzchni Ziemi, inne anomalie magnetyczne mają zasięg regionalny (do 10 000 kilometrów kwadratowych). Powstają w wyniku zmiany pola magnetycznego. Ich wielkość i wytrzymałość zależy od struktury skorupy ziemskiej na tym obszarze. Na przykład, podczas przejścia płaskiego terenu w górzysty, ostry wzrost skorupy ziemskiej występuje zarówno na powierzchni Ziemi, jak i pod nią. Przy takiej zmianie reliefu prędkość przepływu strumienia magmy gwałtownie wzrasta, cząstki materii zderzają się ze sobą, a oscylacje pojawiają się w polu magnetycznym. Jedną z najsłynniejszych anomalii regionalnych jest Kursk i hawajski, największe anomalie magnetyczne kontynentalne (obszar ponad 100 000 kilometrów kwadratowych). Wynikają one z występowania wad skorupy ziemskiej i wpływu osi Ziemi. Na przykład anomalia we wschodniej Syberii spowodowana przesunięciem osi Ziemi w tym kierunku. Ponadto pasma górskie dzieliły rzekę płaszczową na dwie gałęzie, płynące w różnych kierunkach, aby igła kompasu miała deklinację zachodnią w tym regionie. Na wybrzeżu Kanady jest inna sytuacja. Istnieje olbrzymi obszar kontaktu rzeki płaszcza z skorupą Ziemi, dzięki czemu istnieje siła pola magnetycznego, które z kolei przyciąga oś Ziemi ku sobie. Jednak najciekawsza anomalia magnetyczna znajduje się na południu Oceanu Atlantyckiego. Rzeka magnetyczna obraca się w przeciwnym kierunku, zmieniając w ten sposób pole magnetyczne w taki sposób, że obszar ten jest przeciwny do reszty półkuli południowej. Ta anomalia słynie z tego, że kilkakrotne przelatujące nad nią kosmonauci zepsuły świetną elektronikę, anomalie magnetyczne rozpraszają się po całej planecie, nie mają stałej lokalizacji, pojawiają się i znikają, stają się silniejsze lub słabsze. Między innymi lata badań wykazały, że pole geomagnetyczne planety słabnie, a anomalie magnetyczne stają się coraz silniejsze. Wskazówka 9: Do czego służy konstruktor magnetyczny?Zadaniem każdej zabawki jest nietylko po to, by zabawić dziecko, ale by je rozwinąć, kierując intelektualne zdolności dziecka do pożądanego kanału. Projektant magnetyczny w pełni spełnia to wymaganie. Kolekcjonując figurki i tworząc nowe formy części magnetycznych dziecko wykorzystuje kreatywne, analityczne, matematyczne magnetyczny i rozwój dzieckaNa rynku pojawili się konstruktorzy magnetycznistosunkowo niedawno. Kupując zestaw magnesów, dorośli często nie wiedzą dobrze, co kupili. Aby zrozumieć zasady zabawki, warto przeczytać instrukcje. W podręczniku znajdziesz kilka opcji do montażu podstawowych modeli. Konstruktory magnetyczne są zaprojektowane do tworzenia różnych kształtów i kształtów, w tym zaletą magnetycznego projektanta jest to, że nie napędza fantazji dziecka w ramy, ale pozwala mu tworzyć. W podręczniku można znaleźć kilka podstawowych figur, składanych, które dziecko nauczy się "zarządzać" swoją nową zabawką. Wtedy fantazja jest połączona, a dziecko zaczyna tworzyć, tworząc nowe, fantastyczne figury Podstawą pracy projektanta magnetycznego jest połączenie różnych detali. Wewnątrz każdej części znajdują się magnesy. Za pomocą magnesów elementy można łączyć ze sobą z każdej strony. Istnieje kilka modyfikacji zestawów magnetycznych. Dla najmniejszych - tablice magnetyczne z elementami płaskimi. Dla starszych dzieci - szczegóły, które pozwalają tworzyć duże trójwymiarowe figury. Bardzo popularne są zestawy małych magnetycznych kulek i w szkoleniuUżywanie konstruktorów z magnesemelementy pozwala przenieść proces uczenia się na nowy poziom. Stworzenie trójwymiarowych figur z drobnych szczegółów rozwija umiejętności ruchowe, pomaga otwierać nowe umiejętności u dziecka. W trakcie gry dziecko uczy się różnorodności form, uczy się koordynować ruchy, a nauczyciel używa magnetycznych konstruktorów jako pomocy wizualnych. Od szczegółów można zbudować kształt, który demonstruje strukturę cząsteczek. Lub odtworzyć szkielet człowieka w trójwymiarowej projekcji. Lub pokaż trójwymiarowe geometryczne kształty dzieci. Możliwość wielokrotnego sprawdzania i dotykania modeli różnych postaci własnymi rękami zwiększa poziom opanowania nowego materiału w bezpieczeństwaKonstruktory magnetyczne zawierają wiele małychszczegóły, więc kupuj je ostrożnie, biorąc pod uwagę cechy wieku dzieci. Szczególnie niebezpieczne są małe magnetyczne kule, które stanowią część wielu zestawów. Te szczegóły mogą z łatwością przeniknąć przez usta, ucho, nos dziecka. Dlatego dla dzieci zaleca się kupowanie tablic magnetycznych z dużymi szczegółami.
Magnetyzm to dział fizyki zajmujący się oddziaływaniami magnetycznymi materiałów magnetycznych i magnesów oraz przewodników z prądem. W tym artykule znajdziesz podsumowanie najważniejszych informacji o magnetyzmie oraz najważniejsze wzory i zasady z tego działu. Najważniejsze zagadnienia magnetyzmu: Magnesy i bieguny magnetyczne, ferromagnetykiPole magnetyczne, pole magnetyczne ZiemiWłaściwości magnetyczne przewodników z prądem: Linie pola magnetycznego, Pole magnetyczne przewodnika prostoliniowego i Reguła prawej dłoni, Pole magnetyczne przewodnika kołowego, Pole magnetyczne zwojnicy i reguła prawej dłoni dla zwojnicyZjawisko indukcji magnetycznejElektromagnes, Silnik prądu stałegoDodatkowo: Reguła lewej dłoni, Reguła Lenza, Transformator 1. Magnesy Magnes to ciało, które „samo” przyciąga żelazo oraz przyciąga lub odpycha inne magnesy. Magnes wytwarza pole magnetyczne. Każdy magnes posiada dwa bieguny: północny N (zwykle oznaczany kolorem czerwonym) oraz południowy S (zwykle oznaczany kolorem niebieskim). Dwa bieguny magnetyczne jednoimienne (N i N lub S i S) odpychają się wzajemnie, a dwa bieguny różnoimienne (N i S) przyciągają się wzajemnie. Czytaj dalej → 2. Pole magnetyczne Właściwości przestrzeni, w której na umieszczoną igłę magnetyczną (magnes) działają siły magnetyczne nazywamy polem magnetycznym. Igła magnetyczna to mały magnes – znany nam z choćby z kompasu. Jeżeli zbliżymy ją do innego magnesu obróci się wskazując biegun północny tego magnesu. Czytaj dalej → 3. Pole magnetyczne Ziemi Wokół Ziemi istnieje pole magnetyczne. Ziemia zachowuje się jak ogromny magnes sztabkowy. Igła kompasu pokazuje geograficzną północ (i biegun magnetyczny południowy). Czytaj dalej → aby dowiedzieć się dlaczego. Na biegunie geograficznym północnym istnieje biegun magnetyczny południowy, a na biegunie geograficznym południowym biegun magnetyczny północny. 4. Ferromagnetyki Ferromagnetyki to materiały o najsilniejszych właściwościach magnetycznych. Przykładem ferromagnetyka jest żelazo (ferrum po łacinie oznacza właśnie żelazo). Magnes trwały to namagnesowany ferromagnetyk. Ferromagnetyki posiadają domeny magnetyczne, które działają one jak małe magnesy. Domeny magnetyczne są ułożone chaotycznie ale podczas namagnesowania są uporządkowywane i ferromagnetyk staje się magnesem. Czytaj dalej → 5. Właściwości magnetyczne przewodników z prądem Linie pola magnetycznego Pole magnetyczne na rysunku przedstawiamy przy pomocy linii pola magnetycznego. Igła magnetyczna ustawia się zawsze stycznie do linii pola magnetycznego, a biegun północny igły magnetycznej określa zwrot linii. Linie na zewnątrz magnesu mają zwrot od bieguna magnetycznego północnego do bieguna magnetycznego południowego. Pole magnetyczne prostoliniowego przewodnika z prądem Linie pola magnetycznego wokół prostoliniowego przewodnika z prądem mają kształt okręgów leżących w płaszczyźnie prostopadłej do przewodnika, a środki tych okręgów pokrywają się z przewodnikiem. Zwrot tych linii określa reguła prawej dłoni: Jeżeli prawą dłoń obejmiemy przewodnik prostoliniowy w ten sposób, że odchylony kciuk będzie wskazywał kierunek prądu w przewodniku, to ugięte pozostałe palce wskażą zwrot linii pola magnetycznego Pole magnetyczne przewodnika kołowego Jeżeli prąd w przewodniku kołowym płynie zgodnie z ruchem wskazówek zegara to po naszej stronie znajduje się biegun południowy, a po przeciwnej północny. Pole magnetyczne zwojnicy Aby określić bieguny magnetyczne zwojnicy możemy skorzystać z powyższej reguły lub przy pomocy prawej dłoni: Prawą dłonią obejmujemy zwojnicę tak, aby palce wskazywały kierunek prądu w poszczególnych zwojach, a odchylony kciuk wskaże wtedy biegun północny zwojnicy. 6. Zjawisko indukcji magnetycznej Zjawisko indukcji magnetycznej polega na wytworzeniu prądu indukcyjnego w obwodzie, w którym zmienia się pole magnetyczne. Czytaj dalej → 7. Elektromagnes Elektromagnesy wytwarzają silne pole magnetyczne po zasileniu prądem elektrycznym. Elektromagnes zbudowany jest ze zwojnicy i rdzenia ferromagnetycznego. Rdzeń wzmacnia pole magnetyczne zwojnicy nawet kilkaset razy. Najprostszy elektromagnes można wykonać nawijając na gwóżdź przewód elektryczny i podłączając go do baterii. Po podłączeniu będzie on przyciągał niektóre małe przedmioty np. stalowe szpilki. Przykłady zastosowania elektromagnesu to: silniki, prądnice i dzwonek do drzwi. Czytaj dalej → 8. Silnik prądu stałego Silnik elektryczny to urządzenie zamieniające energię elektryczną na mechaniczną. asada działania silnika prądu stałego opiera się na wykorzystaniu pola magnetycznego do obrotu elementu silnika zwanego wirnikiem. Zasada działania silnika prądu stałego: Dwa magnesy różnoimienne stojanu wytwarzają pole magnetyczne, w którym umieszczony jest wirnik, przez który przepływa prąd elektryczny. Pole magnetyczne działa na podłączony do prądu wirnik parą sił, która powoduje obrót wirnika. Komutator zmieniając kierunek prądu w ramce powoduje ciągły obrót wirnika. Czytaj dalej → 9. Dodatkowe informacje Reguła lewej dłoni Na przewodnik z prądem umieszczony w polu magnetycznym działa siła elektrodynamiczna. Kierunek i zwrot siły elektrodynamicznej określa reguła lewej dłoni: Lewą dłoń należy umieścić tak, aby linie sił pola wchodziły prostopadle od wnętrza dłoni, wyprostowane palce wskazywały kierunek prądu, a odchylony kciuk wskaże wtedy kierunek i zwrot siły elektrodynamicznej. Pole magnetyczne działa na przewodnik największą siłą wtedy, gdy jest on ustawiony prostopadle do linii pola magnetycznego. Gdy przewodnik jest ustawiony równolegle do linii pola, wtedy siła elektrodynamiczna jest równa zero. Kierunek siły elektrodynamicznej jest zawsze prostopadły do linii pola magnetycznego i do kierunku przepływu prądu. Reguła Lenza („ reguła przekory” ): Kierunek prądu indukcyjnego jest taki, że pole magnetyczne przez niego wytworzone przeszkadza przyczynie, która go wywołuje. Reguła Lenza wynika z zasady zachowania energii. Zgodnie z tą regułą, gdy zbliżamy magnes do zwojnicy biegunem północnym, to po stronie magnesu zwojnica wytworzy również biegun północny, aby odpychać zbliżający się magnes. Pokonując siłę odpychania magnesu i zwojnicy wykonamy pracę, która zamieni się na energię elektryczną. Zasada zachowania energii zostanie spełniona. Prąd przemienny to taki prąd, którego natężenie prądu i kierunek przepływu prądu ulegają zmianie. Transformator Transformator działa w oparciu o zjawisko indukcji elektromagnetycznej. Związek między liczbą zwojów uzwojenia pierwotnego i wtórnego, a napięciami i natężeniami prądów w uzwojeniach: \large \frac{n_w}{n_p} = \frac{U_w}{U_p} \large \frac{n_w}{n_p} = \frac{I_p}{I_w} n w, n p – liczba zwojów uzwojenia wtórnego i pierwotnegoU w , U p – napięcia na uzwojeniu wtórnym i pierwotnymI w , I p – natężenia prądów w uzwojeniu wtórnym i pierwotnym. Moc uzwojenia wtórnego nie może być większa od mocy uzwojenia pierwotnego, ponieważ transformator jedynie przetwarza energię elektryczną.
oś na której obraca się igła magnetyczna